Beiträge zur Algebra und Geometrie Contributions to Algebra and Geometry Vol. 49, No. 1, pp. 137145 (2008) 

On braxtopes, a class of generalized simplicesMargaret M. Bayer and Tibor BisztriczkyDepartment of Mathematics, University of Kansas, Lawrence KS 660457523 USA, email: bayer@math.ku.edu; Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, T2N 1N4 Canadaemail: tbisztri@math.ucalgary.ca Abstract: In a $d$simplex every facet is a $(d1)$simplex. We consider as generalized simplices other combinatorial classes of polytopes, all of whose facets are in the class. Cubes and multiplexes are two such classes of generalized simplices. In this paper we study a new class, braxtopes, which arise as the faces of periodicallycyclic Gale polytopes. We give a geometric construction for these polytopes and various combinatorial properties. Keywords: braxtope, elementary polytope, $f$vector, Gale, $h$vector, multiplex, polytope, triangulation Classification (MSC2000): 52B12, 52B05 Full text of the article:
Electronic version published on: 26 Feb 2008. This page was last modified: 28 Jan 2013.
© 2008 Heldermann Verlag
