PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE (BEOGRAD) (N.S.) Vol. 34(48), pp. (1983) 

NONANTICIPATIVE INTEGRAL TRANSFORMATIONS OF STOCHASTIC PROCESSESLjiljana Petrovi\'cPrirodnomatematicki fakultet, Kragujevac, YugoslaviaAbstract: Let $X$ be a stochastic process, defined on the interval $[0;1]$, and $Y$ its nonanticipative integral transformation defined by $$ Y(t)=\int\limits^t_0 g(t, u) X(u)du $$ In this paper we shall investigate conditions related to the family $$ G=\{g(t,u), t\in[0;1],u\leq t\} $$ under which the process $Y\!:\!1^\circ$ generates the spaces $H(Y;t)$ equal to the corresponding spaces $H(X;t)$ of the process $\bold X; 2\circ$ belongs to the same class as the process $X; 3^\circ$ is continuous, provided $X$ is continuous. Classification (MSC2000): 60G05, 60G12 Full text of the article:
Electronic fulltext finalized on: 3 Nov 2001. This page was last modified: 16 Nov 2001.
© 2001 Mathematical Institute of the Serbian Academy of Science and Arts
