Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 4 (2008), 018, 29 pages      arXiv:0802.1253      http://dx.doi.org/10.3842/SIGMA.2008.018

Two-Field Integrable Evolutionary Systems of the Third Order and Their Differential Substitutions

Anatoly G. Meshkov and Maxim Ju. Balakhnev
Orel State Technical University, Orel, Russia

Received October 04, 2007, in final form January 17, 2008; Published online February 09, 2008

Abstract
A list of forty third-order exactly integrable two-field evolutionary systems is presented. Differential substitutions connecting various systems from the list are found. It is proved that all the systems can be obtained from only two of them. Examples of zero curvature representations with 4 × 4 matrices are presented.

Key words: integrability; symmetry; conservation law; differential substitutions; zero curvature representation.

pdf (464 kb)   ps (265 kb)   tex (32 kb)

References

  1. Ablowitz M.J., Segur M., Solitons and the inverse scattering transform, SIAM, Philadelphia, 1981.
  2. Zakharov V.E., Manakov S.V., Novikov S.P., Pitaevsky L.P., Theory of solitons: inverse problem method, Nauka, Moscow, 1980.
  3. Drinfeld V.G., Sokolov V.V., New evolution equations having (L-A) pairs, Trudy Sem. S.L. Soboleva, Inst. Mat., Novosibirsk 2 (1981), 5-9 (in Russian).
  4. Hirota R., Satsuma J., Soliton solutions of a coupled Korteweg-de Vries equation, Phys. Lett. A 85 (1981), 407-408.
  5. Antonowicz M., Fordy A., Coupled KdV equations with multi-Hamiltonian structures, Phys. D 28 (1987), 345-357.
  6. Ma W.-X. A class of coupled KdV systems and their bi-Hamiltonian formulation, J. Phys. A: Math. Gen. 31 (1998), 7585-7591, solv-int/9803009.
  7. Ma W.-X., Pavlov M., Extending Hamiltonian operators to get bi-Hamiltonian of coupled KdV systems, Phys. Lett. A 246 (1998), 511-522, solv-int/9807002.
  8. Fuchssteiner B., The Lie algebra structure of degenerate Hamiltonian and bi-Hamiltonian systems, Progr. Theoret. Phys. 68 (1982), 1082-1104.
  9. Nutku Y., Oguz Ö., Bi-Hamiltonian structure of a pair of coupled KdV equations, Nuovo Cimento 105 (1990), 1381-1383.
  10. Gerdt V.P., Zharkov A.Y., Computer classification of integrable coupled KdV-like systems, J. Symbolic Comput. 10 (1990), 203-207.
  11. Foursov M.V., On integrable coupled KdV-type systems, Inverse Problems 16 (2000), 259-274.
  12. Zharkov A.Y., Computer classification of the integrable coupled KdV-like systems with unit main matrix, J. Symbolic Comput. 15 (1993), 85-90.
  13. Karasu A., Painlevé classification of coupled Korteweg-de Vries-type systems, J. Math. Phys. 38 (1997), 3616-3622.
  14. Foursov M.V., Towards the complete classification of homogeneous two-component integrable equations, J. Math. Phys. 44 (2003), 3088-3096.
  15. Meshkov A.G., Sokolov V.V., Integrable evolution equations on the N-dimensional sphere, Comm. Math. Phys. 232 (2002), 1-18.
  16. Meshkov A.G., Sokolov V.V., Classification of integrable divergent N-component evolution systems, Theoret. and Math. Phys. 139 (2004), 609-622.
  17. Balakhnev M.Ju., A class of integrable evolutionary vector equations. Theoret. and Math. Phys. 142 (2005), 8-14.
  18. Balakhnev M.Ju., Meshkov A.G., Integrable anisotropic evolution equations on a sphere, SIGMA 1 (2005), 027, 11 pages, nlin.SI/0512032.
  19. Balakhnev M.Ju., Meshkov A.G., On a classification of integrable vectorial evolutionary equations, submitted.
  20. Kulemin I.V., Meshkov A.G., To the classification of integrable systems in 1+1 dimensions, in Proceedings Second International Conference "Symmetry in Nonlinear Mathematical Physics" (July 7-13, 1997, Kyiv), Editors M. Shkil, A. Nikitin and V. Boyko, Institute of Mathematics, Kyiv, 1997, 115-121.
  21. Meshkov A.G., On symmetry classification classification of third order evolutionary systems of divergent type, Fundam. Prikl. Mat. 12 (2006), no. 7, 141-161 (in Russian).
  22. Ibragimov N.Kh., Shabat A.B., On infinite Lie-Bäcklund algebras, Funktsional. Anal. i Prilozhen. 14 (1980), no. 4, 79-80 (in Russian).
  23. Svinolupov S.I., Sokolov V.V., Evolution equations with nontrivial conservation laws, Funktsional. Anal. i Prilozhen. 16 (1982), no. 4, 86-87.
  24. Sokolov V.V., Shabat A.B., Classification of integrable evolution equations, Soviet Scientific Reviews, Section C 4 (1984), 221-280.
  25. Mikhailov A.V., Shabat A.B., Yamilov R.I., The symmetry approach to the classification of integrable equations. Complete lists of integrable systems, Russian Math. Surveys 42 (1987), no. 4, 1-63.
  26. Mikhailov A.V., Shabat A.B., Sokolov V.V., The symmetry approach to the classification of integrable equations, in Integrability and Kinetic Equations for Solitons, Editors V.G. Bahtariar, V.E. Zakharov and V.M. Chernousenko, Naukova Dumka, Kyiv, 1990, 213-279 (English transl.: in What is Integrability?, Springer-Verlag, New York, 1991, 115-184).
  27. Fokas A.S., Symmetries and integrability, Stud. Appl. Math. 77 (1987), 253-299.
  28. Galindo A., Martinez L., Kernels and ranges in the variational formalism, Lett. Math. Phys. 2 (1978), 385-390.
  29. Drinfeld V.G., Sokolov V.V., Lie algebras and equations of Korteweg-de Vries type, Current Problems in Mathematics, Vol. 24, Itogi Nauki i Tekhniki, VINITI, Moscow, 1984, 81-180 (English transl.: J. Sov. Math. 30 (1985), 1975-2035).
  30. Balakhnev M.Yu., Kulemin I.V., Differential substitutions for third-order evolution systems, Differ. Uravn. Protsessy Upr. (2002), no. 1, 7 pages (in Russian), available at http://www.neva.ru/journal/j/.
  31. Zakharov V.E., Shabat A.B., Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Z. Eksper. Teoret. Fiz. 61 (1971), no. 1, 118-134 (English transl.: Soviet Physics JETP 34 (1972), no. 1, 62-69).
  32. Chen H.H., Lee Y.C., Liu C.S., Integrability of nonlinear Hamiltonian systems by inverse scattering method, Phys. Scripta 20 (1979), 490-492.
  33. Meshkov A.G., Necessary conditions of the integrability, Inverse Problems 10 (1994), 635-653.
  34. Fuchssteiner B., Fokas A.S., Symplectic structures, their Bäcklund transformations and hereditary symmetries, Phys. D 4 (1981/82), 47-66.
  35. Drinfeld V.G., Sokolov V.V., Equations that are related to the Korteweg-de Vries equation, Dokl. Akad. Nauk SSSR 284 (1985), no. 1, 29-33 (in Russian).
  36. Meshkov A.G., Tools for symmetry analysis of PDEs, Differ. Uravn. Protsessy Upr. (2002), no. 1, 53 pages, available at http://www.neva.ru/journal/j/.
  37. Lax P.D., Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21 (1968), 467-490.
  38. Manakov S.V., The method of the inverse scattering problem, and two-dimensional evolution equations, Uspehi Mat. Nauk 31 (1976), no. 5, 245-246 (in Russian).
  39. Zakharov V.E., Inverse scattering method, in Solitons, Editors R.K. Bullough and P.J. Caudrey, Springer-Verlag, New York, 1980, 270-309.
  40. Dodd R.K., Eilbeck J.C., Gibbon J.D., Morris H.C., Solitons and nonlinear wave equations, Academic Press Inc., London, 1984.
  41. Miura R.M. (Editors), Bäcklund transformations, the inverse scattering method, solitons, and their applications, NSF Research Workshop on Contact Transformations, Lecture Notes in Mathematics, Vol. 515, 1976.
  42. Matveev V.B., Salle M.A., Darboux transformations and solitons, Springer, Berlin, 1991.
  43. Gu C.H., Hu H.S., Zhou Z.X., Darboux transformations in soliton theory and its geometric applications, Shanghai Scientific and Technical Publishers, Shanghai, 1999.
  44. Hirota R., The direct method in soliton theory, Cambridge University Press, Cambridge, 2004.
  45. Zienkiewcz O.C., Morgan K., Finite elements and approximation, Wiley-Interscience Publication, New York, 1983.

Previous article   Next article   Contents of Volume 4 (2008)