Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 4 (2008), 039, 13 pages      arXiv:0804.2209
Contribution to the Proceedings of the Seventh International Conference Symmetry in Nonlinear Mathematical Physics

Fine Gradings of Low-Rank Complex Lie Algebras and of Their Real Forms

Milena Svobodová
Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Trojanova 13, 120 00, Praha 2, Czech Republic

Received August 31, 2007, in final form April 07, 2008; Published online April 14, 2008

In this review paper, we treat the topic of fine gradings of Lie algebras. This concept is important not only for investigating the structural properties of the algebras, but, on top of that, the fine gradings are often used as the starting point for studying graded contractions or deformations of the algebras. One basic question tackled in the work is the relation between the terms 'grading' and 'group grading'. Although these terms have originally been claimed to coincide for simple Lie algebras, it was revealed later that the proof of this assertion was incorrect. Therefore, the crucial statements about one-to-one correspondence between fine gradings and MAD-groups had to be revised and re-formulated for fine group gradings instead. However, there is still a hypothesis that the terms 'grading' and 'group grading' coincide for simple complex Lie algebras. We use the MAD-groups as the main tool for finding fine group gradings of the complex Lie algebras A3 @ D3, B2 @ C2, and D2. Besides, we develop also other methods for finding the fine (group) gradings. They are useful especially for the real forms of the complex algebras, on which they deliver richer results than the MAD-groups. Systematic use is made of the faithful representations of the three Lie algebras by 4 × 4 matrices: A3 = sl(4,C), C2 = sp(4,C), D2 = o(4,C). The inclusions sl(4,C) sp(4,C) and sl(4,C) o(4,C) are important in our presentation, since they allow to employ one of the methods which considerably simplifies the calculations when finding the fine group gradings of the subalgebras sp(4,C) and o(4,C).

Key words: Lie algebra; real form; MAD-group; automorphism; grading; group grading; fine grading.

pdf (254 kb)   ps (177 kb)   tex (18 kb)


  1. Bahturin Y., Shestakov I., Zaicev M., Gradings on simple Jordan and Lie algebras, J. Algebra 283 (2005), 849-868.
  2. Bahturin Y., Zaicev M., Group gradings on simple Lie algebras of type A, J. Lie Theory 16 (2006), 719-742, math.RA/0506055.
  3. Couture M., Patera J., Sharp R., Winternitz P., Graded contractions of sl(3,C), J. Math. Phys. 32 (1991), 2310-2318.
  4. Draper C., Martín C., Gradings on g2, Linear Algebra Appl. 418 (2006), 85-111.
  5. Draper C., Martín C., Gradings on the Albert algebra and on f4, math.RA/0703840.
  6. Draper C., Viruel A., Gradings on o(8,C), math-ph/0709.0194.
  7. Elduque A., A Lie grading which is not a semigroup grading, Linear Algebra Appl. 418 (2006), 312-314, math.RA/0512618.
  8. Havlícek M., Patera J., Pelantová E., On the fine gradings of simple classical Lie algebras, Internat. J. Modern Phys. A 12 (1997), 189-194.
  9. Havlícek M., Patera J., Pelantová E., Fine gradings of the real forms of sl(3,C), Phys. Atomic Nuclei 61 (1998), 2183-2186.
  10. Havlícek M., Patera J., Pelantová E., On Lie gradings II, Linear Algebra Appl. 277 (1998), 97-125.
  11. Havlícek M., Patera J., Pelantová E., On Lie gradings III. Gradings of the real forms of classical Lie algebras, Linear Algebra Appl. 314 (2000), 1-47.
  12. Havlícek M., Patera J., Pelantová E., Tolar J., On fine gradings and their symmetries, Czech. J. Phys. 51 (2001), 383-391, math-ph/0411037.
  13. Havlícek M., Patera J., Pelantová E., Tolar J., Automorphisms of the fine grading of sl(n,C) associated with the generalized Pauli matrices, J. Math. Phys. 43 (2002), 1083-1094, math-ph/0311015.
  14. Hrivnák J., Novotný P., Graded contractions of the Gell-Mann graded sl(3,C), Preprint.
  15. Hrivnák J., Novotný P., Patera J., Tolar J., Graded contractions of the Pauli graded sl(3,C), Linear Algebra Appl. 418 (2006), 498-550, math-ph/0509033.
  16. Inönü E., Wigner E., On contraction of groups and their representations, Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 510-524.
  17. Kostrikin A., Kostrikin I., Ufnarovskii V., Orthogonal decompositions of simple Lie algebras (type An), Trudy Mat. Inst. Steklov. 158 (1981), 105-120 (in Russian).
  18. Onishchnik A., Vinberg. E., Lie groups and Lie algebras III, Encyclopaedia of Mathematical Sciences, Vol. 41, Springer-Verlag, Berlin, 1991.
  19. Patera J., Pelantová E., Svobodová M., Fine gradings of o(5,C), sp(4,C) and of their real forms, J. Math. Phys. 42 (2001), 3839-3853.
  20. Patera J., Pelantová E., Svobodová M., The eight fine gradings of sl(4,C) and o(6,C), J. Math. Phys. 43 (2002), 6353-6378.
  21. Patera J., Pelantová E., Svobodová M., Fine gradings of o(4,C), J. Math. Phys. 45 (2004), 2188-2198.
  22. Patera J., Pelantová E., Svobodová M., Fine group gradings of the real forms of sl(4,C), sp(4,C), and o(4,C), J. Math. Phys. 48 (2007), 093503, 25 pages, math-ph/0608032.
  23. Patera J., Zassenhaus H., The Pauli matrices in n-dimensions and finest gradings of Lie algebras of type An-1, J. Math. Phys. 29 (1988), 665-673.
  24. Patera J., Zassenhaus H., On Lie gradings I, Linear Algebra Appl. 112 (1989), 87-159.
  25. Svobodová M., Fine gradings of simple Lie algebras and of their real forms, Master Thesis, Czech Technical University in Prague, 2002.
  26. Svobodová M., Gradings of Lie algebras, PhD Thesis, Czech Technical University in Prague, 2007.

Previous article   Next article   Contents of Volume 4 (2008)