Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 4 (2008), 054, 12 pages      arXiv:0807.1966

Wigner Distribution Functions and the Representation of Canonical Transformations in Time-Dependent Quantum Mechanics

Dieter Schuch a and Marcos Moshinsky b
a) Institut für Theoretische Physik, Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main, Germany
b) Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México D.F., México

Received February 06, 2008, in final form June 08, 2008; Published online July 14, 2008

For classical canonical transformations, one can, using the Wigner transformation, pass from their representation in Hilbert space to a kernel in phase space. In this paper it will be discussed how the time-dependence of the uncertainties of the corresponding time-dependent quantum problems can be incorporated into this formalism.

Key words: canonical transformations; Wigner function; time-dependent quantum mechanics; quantum uncertainties.

pdf (232 kb)   ps (157 kb)   tex (17 kb)


  1. Moshinsky M., Smirnov Y.F., The harmonic oscillator in modern physics, Harwood Academic Publishers, Amsterdam, 1996.
  2. Osborne T.A., Molzahn F.H., Moyal quantum mechanics: the semiclassical Heisenberg dynamics, Ann. Physics 241 (1995), 79-127.
  3. Dias N.C., Prata J.N., Features of Moyal trajectories, J. Math. Phys. 48 (2007), 012109, 23 pages.
  4. Krivoruchenko M.I., Fuchs C., Faessler A., Semiclassical expansion of quantum characteristics for many-body potential scattering problem, Ann. Phys. (8) 16 (2007), 587-614, nucl-th/0605015.
  5. Krivoruchenko M.I., Faessler A., Weyl's symbols of Heisenberg operators of canonical coordinates and momenta as quantum characteristics, J. Math. Phys. 48 (2007), 052107, 22 pages, quant-ph/0604075.
  6. Schuch D., Moshinsky M., Transition from quantum to classical behavior for some simple model systems, Rev. Mex. Fis. 51 (2005), 516-524.
  7. García-Calderón G., Moshinsky M., Wigner distribution function and the representation of canonical transformations in quantum mechanics, J. Phys. A: Math. Gen. 13 (1990), L185-L188.
  8. Moshinsky M., Quesne C., Linear canonical transformations and their unitary representations, J. Math. Phys. 12 (1971), 1772-1780.
  9. Mello P.A., Moshinsky M., Nonlinear canonical transformations and their representations in quantum mechanics, J. Math. Phys. 16 (1975), 2017-2028.
  10. Wigner E.P., On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40 (1932), 749-759.
  11. Schuch D., Moshinsky M., Connection between quantum-mechanical and classical time-evolution via a dynamical invariant, Phys. Rev. A 73 (2006), 062111, 10 pages.
  12. Feynman R.P., Hibbs A.R., Quantum mechanics and path integrals, McGraw-Hill, New York, 1965.
  13. Schuch D., On the complex relations between equations describing the dynamics of wave and particle aspects, Internat. J. Quantum Chem. 42 (1992), 663-683.
  14. Ermakov V.P., Second-order differential equations, conditions of complete integrability, Univ. Izv. Kiev 20 (1880), no. 9, 1-25.
  15. Lewis H.R., Classical and quantum systems with time-dependent harmonic-oscillator-type Hamiltonians, Phys. Rev. Lett. 18 (1967), 510-512.
  16. Schuch D., On the relation between the Wigner function and an exact dynamical invariant, Phys. Lett. A 338 (2005), 225-231.
  17. Kim Y.S., Wigner E.P., Canonical transformation in quantum mechanics, Am. J. Phys. 58 (1990), 439-448.
  18. Kim Y.S., Noz M.E., Phase space picture of quantum mechanics; group theoretical approach, Lecture Notes in Physics, Vol. 40, World Scientific, Singapore, Chapter 3.3, 1991.
  19. O'Connell R.F., The Wigner distribution function - 50th birthday, Found. Phys. 13 (1983), 83-92.
  20. Schuch D., Riccati and Ermakov equations in time-dependent and time-independent quantum systems, SIGMA 4 (2008), 043, 16 pages, arXiv:0805.1687.
  21. Dias N.C., Classicality criteria, J. Math. Phys. 43 (2002), 5882-5901, quant-ph/9912034.
  22. Dodonov V.V., Universal integrals of motion and universal invariants of quantum systems, J. Phys. A: Math. Gen. 33 (2000), 7721-7738.
  23. Atakishiyev N.M., Chumakov S.M., Rivera A.L., Wolf K.B., On the phase space description of quantum nonlinear dynamics, Phys. Lett. A 215 (1996), 128-134.
  24. Rivera A.L., Atakishiyev N.M., Chumakov S.M., Wolf K.B., Evolution under polynomial Hamiltonians in quantum and optical phase space, Phys. Rev. A 55 (1997), 876-889.
  25. Sarlet W., Class of Hamiltonians with one degree-of-freedom allowing applications of Kruskal's asymptotic theory in closed form. II, Ann. Physics 92 (1975), 248-261.

Previous article   Next article   Contents of Volume 4 (2008)